MICRORNAS MIR-29B-3P, MIR-365A-3P, MIR-550A-3P ARE CORRELATED TO HISTOMORPHOMETRY AND BONE TURNOVER MARKERS IN **IDIOPATHIC OSTEOPOROSIS**

Roland Kocijan^{1,3}, Christian Muschitz¹, Fabian Plachel¹, Rainer Dormann¹, Elisabeth Geiger², Susanna Skalicky², Heinrich Resch¹, Patrick Heimel³, Heinz Redl³, Astrid Fahrleitner-Pammer⁴, Johannes Grillari⁵, Matthias Hackl^{2,5}

1 St. Vincent Hospital – Medical Department II, The VINFORCE Study Group, Academic Teaching Hospital of the Medical University of Vienna, Austria 2 TAmiRNA GmbH, Muthgasse 18, 1190 Vienna, Austria

- 3 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13, 1200 Vienna, Austria
- 4 Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz, Austria 5 Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria

	*			_			
BACKGR	OUND		METHODS		RESULTS		CONCLUSION
 regulate gene expression. S to be involved in the regulati Circulating miRNAs are ac cells in the blood or solid shown to reflect the physic modulate the behavior of the We previously reported 11 common deregulation in postmenopausal women idiopathic osteoporosis and (see Poster #SU0324). Based on these findings, between bone specific circulation histomorphometry, bone m 	 MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Several miRNAs are known to be involved in the regulation of bone homeostasis. Circulating miRNAs are actively released from donor cells in the blood or solid tissues, and have been shown to reflect the physiology of donor cells, or to modulate the behavior of their target cells. We previously reported 19 circulating miRNAs with common deregulation in serum of pre-, and postmenopausal women as well as males with idiopathic osteoporosis and low-traumatic fracture (see Poster #SU0324). Based on these findings, we tested the correlation between bone specific circulating miRNAs and bone histomorphometry, bone mineral density as well as bone turnover markers (BTM). 		 Transiliacal bone biopsies were performed in 36 patients (46.6±13.0 years) with idiopathic osteoporosis and low-traumatic fractures to assess bone histomorphometry (BV/TV, BS/BV, OS/BS, ES/BS, QS/BS, Tb.N, Tb.Th, MS/BS, MAR, BFR/BS). Time to last fracture was at least 6 months. Secondary causes for osteoporosis were excluded by careful clinical examination. BTM including iPTH, 25(OH)vitamin D, BALp, OC, PINP, OPG, RANKL, TRAP5b, CTX were analyzed (see table 1). RNA was extracted from serum using phenol/chloroform extraction. Reverse-transcription quantitative PCR (RT-qPCR) analysis of circulation miRNAs was conducted using custom-designed 384 well panels (Exigon). Correlation in R (<i>cor</i> function). Missing values were neglected by only considering complete observations. 		 Out of 19 analyzed miRNAs, several were found to be highly correlated: miR-16-5p, miR-19a-3p, miR-19b-3p, and miR-93-5p were positively correlated (r = 0.71 to 0.96, see figure 1). In total, 12 miRNAs exhibited significant correlations to clinical parameters. Three miRNAs showed 5 or more significant correlations (see figure 2): miR-29b-3p was found to be positively correlated to: P1NP (r=0.400, p=0.021) RANKL (r=0.421, p=0.021) CTX (0.415, p=0.013) TRAP5b by Trend (r=0.311, p=0.078) MAR (r=0.740, p<0.001) BFRVBS (r=0.536, p=0.022). miR-365a-3p was found to be positively correlated to: P1NP (r=0.491, p=0.004) OC (r=0.388, p=0.030) CTX (r=0.337, p=0.048) TRAP5b (r=0.346, p=0.049) 	hsa.n hsa.n hsa.n hsa.n	This is the first study reporting correlations between miRNAs, BTMs, histomorphometry and BMD. Serum levels of miR-365a-3p and miR-29b-3p, which are well-known modulaters of bone formation in vitro, are positively associated to BTMs in patients with idiopathic osteporosis. Mineral apposition rate which reflects new bone mineral being added to cancelous surfaces is strongly associated to miR-29b-3p and miR-550a-3p. Strong correlations were found between the miRNAs.
Bone Turnover Markers iPTH (pg/mL) 34.9 ± Serum CTX (ng/mL) 0.191 ±	0.3 34.4 ± 13.5 26.3 ± 0.12 0.323 ± 0.15 0.340 ±	0.6	haunik 102.3p September 100 (September 10	•	 Tb.N (r=-0.389, p=0.037). miR-550a-3p was found negatively correlated to: BV/TV (-0.435, p=0.018) Tb.Th (r=-0.429, p=0.020) and positively correlated to: BS/BV (r=0.432, p=0.019) 	hsa. hsa. hsa. hsa. hsa. hsa. hsa. hsa.	mR (324) 3 - 4 - 6 - 6 - 6 - 7 - 2 - 2 - 7 - 7 - 5 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 6 - 7 - 7
TRAP5b (U/I) 1.9 ± P1NP (µg/mL) 29.4 ±			hsa,miR, 23b, 3p	_	MAR (r=0.535, p=0.018).		a.miR.16.5p orr ex -ars or or ars or -ars or -ars or -ar -ars or -ars
BALp (µg/L) 29.4 ± .		0.1	hsa.miR.19b.3p		No correlations were found between age, OS.BS,		miR 140.5p - 315 - 388 - 42 017 - 055 017 - 415 0 - 517 005 002 044 005 - 52 011 62 - 308 015 - 505 - 517 - 517 - 52 - 517 - 521 - 517 salet 70 5.5p 019 002 - 348 037 013 017 - 333 - 522 - 537 035 018 045 035 001 015 011 - 501 - 511 - 516 013 01
Osteocalcin (ng/mL) 13.7 ± 25 (OH) vitamin D (ng/mL) 32.7 ± Osteocrategrin (pmol/L) 2.3 ±	7.4 20.4 ± 11.3 19.4 ± 1.5 42.8 ± 26.3 30.2 ± .2 3.1 ± 1.9 2.5 ±	8.9 15.0 1.4	NamiR: 10.0 p visual bit is a strain b		ES.BS, Tb.Sp, MS.BS, Testosterone, OPG, BALp, iPTH, BMD L1-L4 and miRNAs	n	
BMD Values			nsa.mirt.215.50 58 58 58 64 666 58 58 59 54 66 68 4 58 58 59 54 68 68 54 59 59 59 59 59 59 59 59 59 59 59 59 59				<~~

Figure 2. Heatmap depicting the Spearman correlation coefficients between bone turnover markers and histomorphometry and 19 selected miRNAs, which were previously shown to be significantly regulated in serum of low-trauma fracture patients and controls.

Table 1. Bone turnover markers and BMD values in patients with premenopausal (Pre-MP), postmenopausal (Post-MP) and male idiopathic osteoporosis (MIO).

 -2.3 ± 0.9

-1.6 ± 1.2

-2.4 ± 1.8

-1.6 ± 1.2

-2.1 ± 1.5

-1.5 ± 1.1

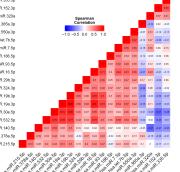


Figure 1. Spearman correlation matrix of 19 miRNAs with best discriminatory power between fracture patients and controls

KRANKENHAUS

BARMHERZIGE SCHWESTERN Wien

L1-L4 (T-score)

Total Hip (T-score)

